Cardiovascular Regulation

Regulation of hemodynamics occurs via local autoregulation, neural control and hormones.
Autoregulation of Blood Flow

- Local regulation of blood flow occurs by vasoconstriction and vasodilation.
- Both occur at the site of arteriolar branches, usually into capillary beds (precapillary sphincters).
- Smooth muscle contraction closes lumen of the blood vessel.
- Response is a direct effect of conditions within local environment.
 - Local vasodilation can be caused by:
 - Uptake of O_2 (local decrease) by local cells and release of CO_2 (local increase).
 - Fall in pH.
 - Injury / inflammation.
 - Local vasoconstriction can be caused by:
 - Decrease in temperature.
 - Release of various chemicals in response to trauma (shock).
 - Response to certain localized activities (digestion –vs- exercise, etc).
Neural Control of Blood Flow

- Cardiac centers and the vasomotor centers within medulla oblongata are responsible for monitoring and regulating cardiovascular activities.
 - Cardioacceleratory center (sympathetic excitation to increase cardiac output).
 - Cardioinhibitory center (parasympathetic inhibition of cardiac output).
 - Vasomotor centers cause vasodilation (inhibition) or vasoconstriction (excitation).
- Cardiovascular centers detect changes in pH, blood pressure and dissolved gas concentrations.
- Two types of “transducers” sense these parameters:
 - Baroreceptors (pressure sensors)
 - Chemoreceptors (chemical sensors).
The Baroreceptor Reflexes

Autonomic reflexes that adjust cardiac output and peripheral resistance to regulate and maintain normal blood pressures.

Baroreceptors are situated at:
- Aortic sinuses (immediately distal to aortic valve).
- Carotid sinuses (within carotid arteries of neck).
- Right atrial walls.
Chemoreceptor Reflexes

- Found in aortic arch and carotid sinuses.
- Additional chemoreceptors in medulla oblongata monitor CSF composition.
- Activation occurs via a rise in CO₂ or drop in pH.
- Produces activation of cardioacceleratory and vasomotor centers.
- Increases cardiac output and vasoconstriction.
Hormones and Cardiovascular Function

Endocrine system provides acute and chronic regulation.

Short term:
- Epinephrine released immediately upon activation of adrenal medulla.

Long term:
- Angiotensin II:
 - Produced via enzymatic reaction initially catalyzed by renin produced by kidneys in response to lower pressure.
 - Causes powerful vasoconstriction and elevation of blood pressure.
 - Activates other hormones that act to retain water.
- Antidiuretic Hormone
 - Also responds to increase in plasma solute concentration.
 - Water retention at kidneys; Vasoconstriction.
- Erythropoietin:
 - Released by kidneys in response to decreased O_2 or blood pressure.
 - Increases RBC production.
- Atrial Natriuretic Peptide
 - Released by cells in RA in response to increased blood pressure.
 - Responds to increased venous filling by promoting loss of Na+ and water at kidneys, inhibiting sympathetic activation of adrenal medulla, and vasodilation.
Cardiovascular Response to Exercise

- Cardiac output at rest ranges from 4.5 – 6 L/min.
- Exercise produces substantial increase.
- Effects of exercise:
 - Vasodilation at skeletal muscle vasculature.
 - Increase in venous return.
 - Increase in cardiac output as a function of the Frank-Starling law and as a reflex response to atrial stretching.
 - Arterial pressure are therefore maintained despite decrease in downstream resistance.
 - Advanced stage of exercise produces sympathetic stimulation.
 - Produces vasoconstriction for non-essential vasculature.
 - Blood supply to brain remains unaffected.
 - Chronic exercise produces mild to moderate hypertrophy of cardiac muscle.
 - Significant chronic exertion coupled with genetic predisposition can cause hypertrophic cardiomyopathy.
Response to Hemorrhage

- Hemorrhage → significant loss of blood volume.
- **Short term responses:**
 - Baroreceptor reflexes stimulate cardiac output and initiate peripheral vasoconstriction.
 - Mobilization of the venous reserve.
 - Sympathetic stimulation of heart rate.
- **Longer term responses:**
 - Decline in capillary blood pressure reverses pressure gradient and moves interstitial fluid into capillaries.
 - Hormones (ADH, aldosterone) released to promote fluid retention at kidneys.
 - Erythropoietin released to stimulate RBC formation.
 - Thirst reflexes triggered.
- Significant blood loss (> 35%) leads to circulatory shock.